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Rapid plunging of a body partly submerged in water
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Abstract. The water flow is studied when a thin body, part-submerged in originally still water, is plunged vertically
downward. The rapid motion is at medium-to-large Reynolds number. The flow structure consists mainly of two
viscous nonlinear layers, namely the unsteady boundary layer on the plunging body and unsteady wake along
the trailing free surface, and one inviscid linear region in the bulk of the water. The former produce unsteady
displacements which force the motion in the inviscid bulk, along with mixed boundary conditions, and control
the evolutions of the wake-side and upper free surfaces. Other regions present are also considered. Analytical and
numerical solutions are described, including the effects of the high Froude number and of contact slippage, and
the time to bubble formation on the body.
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1. Introduction

The water motion produced by a plunging body intersecting the water-air surface has been
studied under various conditions by [1–8]. This article concerns nonlinear and viscous ef-
fects in water flow at medium to high Reynolds numbers Re when a part-submerged body
moves by a substantial degree mostly in its own plane. Our motivation came from difficulties
encountered in marine-technology and related computations.

The motion of prime concern here is in a two-dimensional vertical plane, with a free
surface between water and air, and Re � 1. A fundamental problem in that context is for
a partly submerged vertical flat plate or thin body being moved in its own plane. Surface-
tension effects are omitted in the present study. If gravity is also negligible or its effects are
suitably small, then for the case of the vertical plunging flat plate we can expect the major
nonlinear motion to occur in thin O(Re−1/2) scaled regions near the plate, specifically in a
downward moving unsteady boundary layer attached to the plate and in its unsteady detached
wake immediately above which adjoins a trailing free surface (Figure 1). This is because under
zero gravity the whole motion is due solely to the downward-moving plate at large Re; without
viscous forces there would be no water motion at all in the case of the vertical flat plate.

The contact point, i.e. the effective trailing edge where the free surface starts, is assumed
at first to not slip relative to the plate; compare [9–14]. Further, the times considered are prior
to any water impingement onto the dry plate above that contact point. The aim in this paper is
then to determine the induced water flow, the free-surface shapes and criteria on impingement
(incipient bubble formation) of the water on to the dry part of the plate.

Sections 2 and 3 describe the flow structure: the nonlinear thin viscous layers near the plate
have to be resolved first (Section 2), followed by the linear outer inviscid region (Section 3).
Other flow regions generated in this asymptotic treatment of the Navier-Stokes equations are
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Figure 1. Water-flow regions 1–3 produced by a plunging solid surface (at y = 0 in this case).

also considered. Section 4 then presents results for the most basic case of zero gravity and no
slip, after which Section 5 examines the influences of Froude number and of slipping at the
plate. Attention is drawn to predicted impingement on to the plate surface as the parameters
in Sections 4 and 5 are varied. Section 6 gives further comments, on body thickness effects,
impingement, the influence of air interaction and allied features.

2. Main viscous regions

The vertical plate is initially at rest in still water. The submerged length L then provides a
geometric length scale, which serves to rule out a similarity solution for the complete flow.
The plate thereafter moves vertically downward with velocity uw(t). See Figure 1. Here the
vertically downward and horizontally rightward lengths x, y, respectively, are measured in
terms of L, while the vertically downward and horizontal velocities u, v and time t are in
terms of a representative downward speed U and L/U in turn, the large Reynolds number
being Re ≡ UL/v where v is the kinematic viscosity of the fluid (water); the corresponding
stream function is denoted by ψ . If ρ is the constant density, pressure p is measured on ρU 2.
The two main regions which have viscous nonlinear flow are the boundary layer region 1 and
the wake region 2, with the latter lying at the unknown free surface trailing above the moving
contact point. The boundary conditions on the trailing (or side) free surface reduce to p = 0,
∂u/∂y = 0 and the kinematic constraint, where the atmospheric pressure is taken as zero. We
start here with zero gravity effect (high Froude number, compare with Section 5) and no slip
along the plate. Thus, the contact point x = k(t), where k′ ≡ uw(t), remains at the descending
trailing edge at a unit distance above the leading edge. Usually we will consider uw(t) to be
unity for all t > 0, in which case k = t . Outside, the bulk of the fluid remains nearly still in
region 3, which is examined in the next section after the discussion of regions 1, 2 below.
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The boundary layer lies between the leading edge at x = k(t) + 1 and the trailing edge
at x = k(t) and has ∂p/∂Y being negligible, so that p is o(1) to match with the bulk of the
slower flow as considered in Section 3 below. It is assumed that u ∼ 1 and so the classical
viscous scalings hold, giving

y = Re−1/2Y, u ∼ 1, (ψ, v) = Re−/2(�, V ) (2.1)

to leading order, with � zero at the plate. The governing equations are thus

ux + VY = 0, ut + uux + V uY = 0 + uYY , (2.2a,b)

from the orders of magnitude implied in (2.1) and the property that p is o(1). The boundary
conditions are u = uw(t) and V = 0 at Y = 0, u → 0 as Y → −∞, respectively for the
no-slip conditions and to match to region 3.

In the wake where 0 < x < k(t) the unsteady boundary-layer equations (2.2a,b) again
apply, with p small because of the free-surface pressure condition. The equations follow as in
(2.1) from a classical argument with V,� of O(1) for the balance of continuity. The side free
surface is assumed to be within a normal O(Re−1/2) of the plate at typical O(1) values of x.
The y-momentum equation again yields ∂p/∂Y being negligible, leaving p(x, t) independent
of y and hence zero (atmospheric) at leading order. The remaining free-surface conditions
require

uY = 0,−V = f2t + uf2x, at Y = −f2(x, t), (2.3a,b)

where the unknown side free surface position is y = −Re−1/2f2, and once again u → 0
as Y → −∞. However, f2 can be eliminated from the main problem here by the Prandtl
transposition Y + f2 ≡ Ỹ , V + f2t + uf2x ≡ Ṽ . The governing equations remain (2.2a,b)
with Ṽ , Ỹ replacing V , Y , but the free-surface conditions (2.3a,b) become uỸ = 0, Ṽ = 0,
at Ỹ = 0. We have still u → 0 at large negative Ỹ and we therefore note, for later use, that
Ṽ → −�x + f2t in term of x, Y then.

Moreover, putting x − k(t) ≡ 1 − x̂ to measure (x̂) upwards from the leading edge, along
with the boundary layer’s Y (or Ỹ in the wake) = −Ŷ , u = 1− û, V (or Ṽ in the wake) = −V̂ ,
leaves the governing equations intact yet again but in terms of (û, V̂ ) (x̂, Ŷ , t) and converts
the combined boundary conditions of regions 1, 2 to the form

û = V̂ = 0 at Ŷ = 0 for 0 < x̂ < 1, (2.4a)

ûŶ = V̂ = 0 at Ŷ = 0 for x̂ > 1, (2.4b)

û → 1 as Ŷ → ∞. (2.4c)

We remark that the above is in the case of uw = 1, k = t for t > 0. Also the scaled stream
function corresponding to û, V̂ is �̂ where � = �̂− Ŷ for the boundary layer, and in effect f2

is zero throughout the boundary layer region 1, is nonzero (and assumed positive) throughout
the wake portion and is assumed to be continuous and therefore zero at the contact point
x̂ = 1, x = k, leaving the horizontal coordinates Y, Ỹ , Ŷ all zero there. To repeat, the viscous
flow solution in regions 1, 2 is unaffected by the side-free-surface shape f2, except in so far as
the Prandtl transposition holds. The major task here is to solve the unsteady boundary-layer
equations subject to (2.4a–c).
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It follows that we obtain precisely the unsteady boundary-layer and wake problem of an
aligned flat plate started impulsively from rest in unbounded fluid. The same reasoning applies
to near-vertical bodies of relatively small thickness, while thicker bodies provoke substantial
outer inviscid flow which determines the slip velocity at the outer edges of the boundary layer
and wake. In the present case the solution for the boundary layer and wake will be described
in Section 4 and in particular it gives the scaled unsteady displacement δ(x, t) as the integral
of (1 − û) over Ŷ from 0 to ∞, in the usual way, such that �̂ ∼ Ŷ − δ and so V̂ → ∂δ/∂x̂

(which is −∂δ/∂x) at large positive Ŷ , along with � → −δ then in the boundary-layer portion
(whereas in the wake portion ∂�/∂x → ∂f2/∂t −∂δ/∂x). This displacement effect calculated
in Section 4 below drives the outer flow in region 3, as follows.

3. Main inviscid region, and other regions

In the outer flow x, y are of 0(1) and the velocities and pressure are small, say

(u, v, ψ, p) = Re−1/2(u∗, v∗, ψ∗, p∗) (3.1)

to leading order. So the nonlinear convection terms and the viscous terms are negligible,
leaving the controlling equations

u∗
x + v∗

y = 0, u∗
t = −p∗

x, v∗
t = −p∗

y. (3.2a–c)

Potential flow thus holds here, controlled by Laplace’s equation

(∂2
x + ∂2

y )p
∗ = 0 (3.3)

subject to mixed boundary conditions. These are

p∗ = 0 at x = 0 (along the upper free surface), (3.4a)

p∗ → 0 at infinity, (3.4b)

p∗ = 0 at y = 0 for 0 < x < k, (3.4c)

p∗
y = −δxt (x, t) at y = 0 for k < x < k + 1, (3.4d)

p∗
y = 0 at y = 0 for x > k + 1. (3.4e)

Here (3.4a,c) are free-surface conditions, the upper free surface being assumed to be at x =
Re−1/2f1(y, t) say (determined below), while the side one is at y = −Re−1/2f2(x, t). Con-
dition (3.4b) corresponds to zero motion in the farfield. Condition (3.4d) stems from the
boundary-layer region 1, which gives V = −V̂ → ∂δ/∂x as Y → −∞ and hence by
matching v∗

t → ∂2δ/∂x∂t , corresponding to the matching ψ∗ → −δ, and from use of (3.2c).
Condition (3.4e) is from the horizontal symmetry below the leading edge.

The potential-flow solution, from Appendix A, yields in particular

�t = −(x̄ − x̄A)1/2

π

∫ x̄A

−∞
(x̄A − ξ̄ )−1/2

(x̄ − ξ̄ )
[δt (ξ̄ , t) − δ′

0(t)] dξ̄ − δ′
0(t) (3.5)
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Figure 2. Upper free surface shape at t = 1–40 in the absence of gravity effects.

for the value of �t = ψ∗
t along the upper and side edges of the inviscid region 3. Here

x̄A = −k2, the upper edge has x̄ = y2 and the side edge has x̄ = −x2, while δ0(t) denotes
the value of δ at the moving trailing edge which is the contact point. We recall that here uw,
k are 1, t , respectively. The two δ′

0 terms in (3.5) cancel out for the side edge but not for the
upper edge. The value (3.5) at x = 0 leads to the evolution of the scaled upper free surface
f1 as displayed in Figure 2. This is because the kinematic condition at the upper free surface
x = Re−1/2f1(y, t) � 1 is u = Re−1/2f1t + vRe−1/2f1y in full but u, v are given by (3.1)
and so the balance

u∗ = f1t at x = 0

is required. In consequence �y = f1t , giving �yt = f1t t . On the other hand, along x = 0 we
have y = −x̄1/2, with x̄ being positive and y being negative here. It follows that

f1t t = −2x̄1/2�x̄t ,

where the right-hand side can be determined from differentiating (3.5), for x̄ > 0. Thus f1t t

is determined. A double integration with respect to t gives f1, which is shown in Figure 2 (in
the results t increases from bottom to top), using results for δ(x, t) derived in the next section.
The upper free surface is seen to rise monotonically with t and this is sensible physically
in view of the positive and increasing viscous displacement by the descending plate and the
absence of gravity effects: compare Section 5. Behaviour very similar to that in Figure 2 has
been observed in direct simulations even at quite low Reynolds numbers and Froude numbers,
for example in [2]’s results at Re = 20, Fr = 20 for water free-surface motion near the
descending side of a part-submerged rotating circular cylinder.
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The scaled shape of the side free surface f2 follows from the note at the end of the para-
graph containing (2.3a,b) which shows that −�x → δx − f2t at the outer edge of the thin
wake, since V̂ (≡ −Ṽ ) → δx then. So on integration with respect to x the relations

f2t = −f̄2x, with f̄2(x, t) = −�(x, 0, t) − δW (x, t), (3.6)

determine f2 for the range 0 < x < t , where δ in the wake is written δW . It is interesting that
both the inviscidly induced effect (3.5) with x̄ = −x2 and the viscous wake displacement δ =
δW in (3.6) are involved in determining f2. Results for the side free surface f2 are presented
in the next section.

At least four other small regions or thin layers are present in the water flow. These are: a
small zone close to the leading edge at x = k + 1; small zones near the trailing edge at x = k;
a small zone surrounding the intersection of the upper and side free surfaces near the origin;
and a viscous layer along the upper free surface, in contrast with the wake layer region 2 along
the side free surface. A description of these is presented in Appendix B.

4. Method, and results in the simplest case

Numerical solutions were obtained first for the simplest case above where gravity is negligible
and no slip applies as in (2.4a): see Section 5 for the inclusion of gravity effects and slippage.

The numerical method for the unsteady boundary-layer and wake problem, a nonlinear evo-
lution problem considered earlier by [15–17], consisted of the following. First, both equations
are transformed into a fixed domain (x, y) ∈ [0, 1] × [0,+∞), and then we put η̃ = y/2t1/2

and η = 2/π arctan η̃ to account for the initial singularity in time and the variation across the
boundary layer. The resulting equations are discretized with the θ-method in time and central
differencing for both first and second derivatives in η. Here a conservative form of the convec-
tive term was employed, similar to the well-known Davis coupled scheme [18, pp. 218-221]
for steady boundary layer problems. It was found that a method based on a nonconservative
form of the convective terms works only for the wake, not the boundary layer. The ensuing
discretized system is solved by marching downstream and at each station iterating for the
continuity equation, which is discretized with a trapezoidal scheme. The resulting algorithm
is very efficient and robust for both the boundary layer and wake. The numerical method for
the scaled surface shape f2 was based on either integrating along the characteristic lines and
solving an ODE, or transforming to a fixed domain [0,1] and solving a PDE, the results from
each approach agreeing closely. The integral in (3.5), which is involved in the calculation of
f2, needs special treatment. Direct calculation of the integral leads to

∂t(f̄2 + δW ) = (k2(t) − x2)1/2

π

∫ −k2(t)

−(k(t)+L)2

δt (ξ̄ , t) dξ̄

(−k2(t) − ξ̄ )1/2(x2 + ξ̄ )
.

Then this integral has to be transformed into the corresponding interval in which the boundary-
layer displacement δ is defined. That means that the actual effect of the boundary-layer dis-
placement δ on f2 comes from both time and space variation. A further transformation is also
needed to eliminate the singularity in the integral. Finally the resulting integral is evaluated
by a trapezoidal rule.

The whole computational procedure thus involved, at each time level, solving the unsteady
boundary-layer equations and calculating δ; solving the unsteady wake equations by taking
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the solution of the boundary layer at the trailing edge as upstream condition and calculating
δ = δW ; solving the equation for the side free surface, using the δ so obtained.

The main results are given in Figure 3(a,b). We observe the large range of t covered, and
note that δ = 0 at the original top level x = 0 as u reverts to 1 across the entire wake;
any disturbances travel with free stream speed 1 at most in the downward moving frame. In
addition δ exhibits the known irregularity [δ0(t) − 0(x̂1/3

m )] due to the Goldstein near-wake
form in region 2 just above the trailing-edge contact point, the coordinate x̂m = (t − x) being
zero at that point. For small t the boundary layer and wake are given mostly by the Rayleigh
form and a local similarity solution, respectively, whereas at large t the Blasius form holds on
the plate, far below the top level, as is evident at t = 10. Just above the contact point (f2 = 0)

f2 ∝ x̂1/3
m (4.1)

with a positive coefficient of proportionality, due to the −x̂
1/3
m implicit in δW in (3.6): see

Appendix B. Also, f2 increases monotonically with t at each x station, which is again sensible
physically because of the downward-plunging viscous displacement and indicates that there
is no impingement of the side free surface on to the plate surface here (compare the gravity
effect of the following section). Near the top, however, a wave-like response occurs which
becomes almost stationary, at large t , and suggests that a small gravity effect could eventually
lead to impingement: see next section.

5. Gravity and slip contributions

5.1. FROUDE-NUMBER EFFECTS

Concerning gravity, we consider the changes in the flow balances in regions 1–3 above as the
inverse Froude number, Fr−1 ≡ ĝ = gL/U 2, is increased gradually from zero, for instance
as the downward-plunging velocity scale U is decreased. Since the inertial forces present are
at their smallest, of order Re−1/2, in the outer region 3, it is clear that the effects of ĝ are
first felt within region 3 when ĝ is still small, specifically when ĝ becomes Re−1/2g̃ with g̃ of
0(1). There is still no effect at leading order then in the boundary-layer and wake regions 1
and 2, because there the inertial forces are typically of order unity. With the effects of gravity
appearing in the outer region, the inviscid solution there (again see Appendix A) leads to

∂t(f̄2 + δW ) = −(k2(t) − x2)1/2

[
1

π

∫ −k2(t)

−(k(t)+L)2

δt (ξ̄ , t)dξ̄

(−k2(t) − ξ̄ )1/2(x2 + ξ̄ )
+ g̃

]
, (5.1)

which is the required extension of (3.5) (evaluated now along the side edge) and (3.6). Fig-
ure 3(c–f) gives some sample results. Figure 3(c,d) shows that relatively small gravity yields
waves not unlike those for zero gravity but, in contrast with Section 4, here impingement
occurs eventually in all cases. For any non-zero g̃ there is a bubble (impingement) formed
above the contact point at some positive time denoted by tcrit, and moreover

tcrit ∼ g̃−2/3 for large g̃. (5.2)

This relation is discussed further in Section 6 and it holds in practice for g̃ above about 2
(see Figure 3g). The critical time is positive and finite for any positive g̃ because, on the
one hand, the +x

1/3
m behaviour of f2 stays intact at the contact point throughout but, on the
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other hand, f̄2x responds as xg̃ ln t at large times, from (5.1). This balance is reflected in the
findings for various g̃ in Figure 3. Further, if x = xcrit is the location of touchdown where
f2(x, tcrit) = 0, Figure 3(h) shows xcrit to be monotonically decreasing with g̃ which again is
sensible physically.

5.2. SLIPPING EFFECTS

With slip effects, the contact point xc(t) slips relative to the plate and it forms a moving
(decelerating) trailing edge. With initial length L normalised to unity again, the boundary
layer is defined in x ∈ [xc, k+L] and a slip condition is imposed on the plate Y = 0; compare
Appendix B. The wake region has δ, u continuous with the boundary-layer values at xc±.
These are the only alterations. After the Prandtl conversion as in Section 2, the boundary layer
has

ûŶ = λû, V̂ = 0 at Ŷ = 0, (5.3)

and û → k′(t) as Ŷ → ∞, while the wake has 0 < x � xc(t). The equation for the side free
surface is modified to (5.1) with right-hand side

−(x2
c (t) − x2)1/2

[
1

π

∫ −x2
c (t)

−(k(t)+L)2

δt (ξ̄ , t) dξ̄

(−x2
c (t) − ξ̄ )1/2(x2 + ξ̄ )

+ g̃

]
. (5.4)

The determination of xc(t) can be achieved by solving the unsteady boundary-layer equations
with varying length L̂(t) = k(t)+L−xc(t). Obviously we have û(L̂, 0, t) = L′(t) = k′(t)−
x′
c(t), an implicit equation for xc(t), which was discretized by a backward Euler scheme.

Therefore, iteratively solving the boundary-layer equations coupled with the above discretized
equation determines xc and so L̂ at each time level. The whole computational procedure of
iteration with slip accommodated is thus as before except for some details.

The slip conditions investigated are simple, namely (5.3) with

[Slip condition 1] λ = 5, 1, 0.5; (5.5a)

[Slip condition 2] λ = c

(
1

x̂

)r

, x̂ ∈ [0, L̂(t)], (5.5b)

where c, r are constants. See also Appendix B. Figure 4 shows the δ solutions up to t = 4
and, for 3 cases, f2 with slip condition 1 applying for different λ values. The qualitative
features are the same, although increased slip corresponding to decreased λ clearly reduces
the size of δ and the length of the side free surface (wake), but the free surfaces keep almost
the same shape for a given g̃. Figure 4 emphasises the effects on f2 due to slip, through
condition 1, as well as the influence of varying g̃. Properties at the impingement time tcrit

are shown. Again there is virtually no qualitative difference, but the shrinking of the wake
is evident both for an increased slip factor and for increased g̃. Figure 5(a–d) is for the slip
condition 2, giving δ, f2 for varying values of g̃, with c = 1 and r = 1, 1·5. The overall
effects are again interesting and coincide with those described earlier. Figure 5(e–g) continues
the theme for the slip condition 2. Here c = 1 and r = 2, giving further enhanced slipping
towards the trailing-edge contact point. Localised waves of a known kind can appear in δ and
in the plate surface velocity after a finite time within the boundary layer, due to the increasing
slip. They have no apparent strong influence on f2, however, and they are eradicated at a
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Figure 3. No-slip. (a) BL & Wake displacement thickness δ(x, t). (b) f2(x, t) for g̃ = 0. (c) f2(x, t)

for g̃ = 0·1. (d) f2(x, t) for g̃ = 0·125. f2(xcrit, tcrit) = 0 with xcrit = 1·183 and tcrit = 9·445.
(e) f2(x, t) for g̃ = 1·0. f2(xcrit, tcrit) = 0 with xcrit = 0·578 and tcrit = 2·073. (f) f2(x, tcrit) for differ-
ent g̃ = 0·125, 0·15, 0·175, 0·2, 0·3, . . . , 0·9, 1·0, i.e., the shapes at the time bubbles are implied. (g) Plot of
q = ) ln (tcrit)/() ln (g̃)) against g̃. (h) Plots of tcrit and xcrit) against g̃.
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Figure 4. Slip condition 1. (a–d) Displacement δ(x, t) for no-slip and slip condition 1. (e–i) Shapes of side free
surface f2(x, t), t = tcrit with g̃ = 0·5, 1, 1·5, 2, . . . , 9, 9·5, 10 for no-slip and slip condition 1.
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smaller c value; Figure 5(h,i) presents f2 for the case of c = 0·5, r = 2. Finally Figure 6
plots the location of the contact point xc versus t for various λ values in condition 1 and for
various c, r values in condition 2. The last two point to the emergence of a similarity response
as t increases, in which u scales with 1 and hence xc with t . Likewise x, y, v scale with
t, t1/2, t−1/2, respectively. This response remains to be followed through.

6. Further comments

It is of immediate interest that the gravity effect first appears via g̃ in the inviscid outer
region 3, not via ĝ(= Fr−1) in the nonlinear inner regions. This gravity effect g̃ forces the
side free surface to impinge on the plate within a finite time, suggesting bubble formation
subsequently. Indeed the extra effect ∝ g̃ if considered on its own causes the upper free
surface to fall (u∗ > 0 there) and the side surface to impinge immediately on the plate above
the contact point (since v∗ > 0 then), as one would expect of enhanced gravity. This leads
not only to the impingement trends seen in the earlier figures as g̃ increases but also to the
result (5.2), and Figure 3(d), when combined with the overriding influence of the viscous
displacement just above the contact point. Slip conditions by contrast have no qualitative
influence on the free-surface shapes prior to a bubble forming, although the shapes do shrink
with increasing slip.

The result (5.2) that the critical time scales with g̃−2/3, when g̃ is large, shows that the
dimensional time tD involved is independent of the original submerged length L, due to the
L/U and Re−1/2U 2/L factors implicit in t, g̃, respectively. This independence also makes
good physical sense, since the critical wake lengths as well as times are so short then. The
dimensional time tD is also found to be independent of the dimensional downward speed U

then, because the inherent viscous Rayleigh thickness (vtD)1/2 yields an acceleration v1/2t
−3/2
D

which is comparable with that of gravity g when tD ∼ g−2/3v1/3. It is observed also that there
is no significant stress singularity over the length scales considered in this study.

Other geometric shapes of body yield a similar flow structure, even if the body thickness
is of 0(1), in which case u, v,ψ, p in the bulk of the water motion become of order unity
instead of being as in (3.1). Downward plunging thin body shapes other than the flat plate
were mentioned near the end of Section 2 and can be accommodated readily in the analysis,
by virtue of the Prandtl transposition property. Thus δ is simply replaced by δ + f3, where
f3(x, t) denotes the Re−1/2 scaled moving body thickness in the horizontal direction.

Subsequent points of interest are these. First, calculations with slip conditions should
continue and be made more realistic. Second, treating a single or a few closed air bubbles
is difficult but may actually simplify for many bubbles. The overall viscous region then is
relatively thick (and long) compared with each individual bubble, according to an analogy with
the multiple boundary layer-and-wake setting in [19]. That leaves the overall, outer, viscous
region as one subject to a quasi-no-slip constraint at the solid surface, as in Section 4, whereas
each (small) bubble is immersed in uniform shear flow. Attempts may continue nevertheless
for the case of few bubbles. Third, direct Navier-Stokes simulations, e.g. as in [2, 20], and
experiments would be useful for comparison, and work by us on the former is in progress.
Fourth, the upward-moving plate partially submerged at time zero poses another fundamental
problem of concern, and likewise for an oscillating plate and for a rotating partially submerged
circular cylinder. Finally, the air flow has been assumed to be dynamically negligible, at least
until the verge of impingement. This assumption needs checking, as follows, especially in the
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Figure 5. Slip condition 2. (a,c,e,h) Displacement δ(x, t). (b,d,f,i) Shapes of side free surface f2(x, t), t = tcrit
for g̃ = ·5, 1·0, 1·5, 2·0, . . . , 9·0, 9·5, 10. (g) Velocity on the plate for c = 1, r = 2. The numerical solution
breaks down at t = 1·5363.
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Figure 6. Plot of xc(t) against t for (a) slip condition 1 and (b) slip condition 2.

air gap between the side free surface and the plate above its trailing-edge contact point since
that gap is thin. There, due to the kinematic viscosity of air being only about 16 times that
of water, the representative air boundary-layer thickness is approximately only 4 times that of
water and so can be taken to be the same, of order Re−1/2. Hence the air pressure gradients
generated are of a characteristic size equal to the density ratio ρair/ρ, given the continuity at
the air-water interface of u which is 0(1) in the water wake. These extra pressure gradients are
thus negligible compared with those generated in the bulk of the water flow as given in (3.1)
with x, y of order one provided that ρair/ρ � Re−1/2. In consequence the requirement

Re � (ρ/ρair)
2 (6.1)

holds on the theory in the present paper. The right-hand side here is about 106, for example
for dry air and pure water at one-atmosphere pressure, and so Re can still be reasonably large
while satisfying (6.1). Impingement, during which air-water interaction does enter play, is
studied by [21].
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Appendix A. Solving in the inviscid region 3

This concerns the solution of (3.3) for the scaled pressure in the quarter-plane x > 0, y < 0
subject to (3.4a–e). From (3.2a–c) p∗ − iψ∗

t is an analytic function of z = x + iy since
u∗ = ∂ψ∗/∂y, v∗ = −∂ψ∗/∂x.

A transformation to a half-plane (Imz̄ > 0) is afforded by the mapping

z̄ = −z2, (A1)

where z̄ = x̄ + iȳ, say, giving x̄ = y2 − x2, ȳ = −2xy. Here the top edge x = 0, y < 0 is
mapped to the positive real axis x̄ = y2, ȳ = 0, while the side edge y = 0, x > 0 is mapped
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to the negative real axis x̄ = −x2, ȳ = 0. In particular, the transformed trailing-edge position
is at x̄ = −t2 (≡ x̄A say) and the leading edge is at x̄ = −(t + 1)2(≡ xC say) for the main
case ue = 1, k = t .

The function p∗ − iψ∗
t is analytic in z̄ in the upper half-plane ȳ > 0 and satisfies mixed

boundary conditions along the x-axis, from (3.4a,c–e),

p∗ = 0 at ȳ = 0, x̄ > x̄A, (A2)

p∗
ȳ = h̄(x̄, t), ȳ = 0, x̄ < x̄A, (A3)

as well as the condition of zero p∗ in the far field. In (A3), h̄ which is ∂2ψ∗/∂x̄∂t (x̄, 0) from
the Cauchy-Riemann equations is equal to −∂2δ/∂x̄∂t , i.e. (2x)−1∂2δ/∂x∂t [see (3.4d)] for
the interval x̄C < x̄ < x̄A corresponding to the plate and h̄ is zero for x̄ < x̄C corresponding
to the symmetry condition (3.4e).

The function (z̄− x̄A)
−1/2[p∗ − iψ∗

t − iδ′
0(t)] is likewise analytic, with the δ′

0 making this
function finite at z̄ = x̄A, while the inverse square root is defined as |z̄ − x̄A|−1/2 exp(−iθ̄/2)
with θ̄ ≡ tan−1(ȳ/(x̄ − x̄A)) being zero along ȳ = 0 for x̄ > x̄A and π along ȳ = 0 for
x̄ < x̄A. Hence the real part of the function is prescribed all along the x̄-axis, from (A2),(A3).
Its imaginary part therefore follows directly from the Cauchy-Hilbert integral of the known
real part. That yields the equation

−(x̄ − x̄A)
−1/2(ψ∗

t + δ′
0) = − 1

π

∫ x̄A

−∞
(x̄A − ξ̄ )−1/2(δ′

0 − δt (ξ̄ , t))
dξ̄

(x̄ − ξ̄ )
(A4)

along the real axis of z̄, for x̄ > x̄A, associated in the z-plane either with the top edge or with
the side edge above the contact point. In obtaining (A4) the condition ψ∗ = −δ (at ȳ = 0,
x̄ < x̄A) has again been used.

The relation (A4) gives the result (3.5) quoted in the text. The lower bound of integration
in (3.5), (A4) is kept as −∞ because although δt (ξ̄ , t) is identically zero for ξ̄ < x̄C the term
δ′

0(t) is nonzero.
Including gravity yields the explicit form

g̃x − g̃
{
z + (z + t)1/2(z − t)1/2} , (A5)

to be added to p∗ − iψ∗
t in the z plane. The term g̃x (in p∗) balances the gravity force in the

x-momentum equation. Here and above the appearance of square roots is as expected, given
the mixed boundary conditions. The branches of the square root functions in (A5) are defined
such that (z+ t)1/2 is |z+ t|1/2 exp(iθ1/2) with θ1 ≡ tan−1(y/(x + t)) and θ1 being between 0
and π in the region y < 0, and similarly for the other square root with argument θ2/2. All the
required boundary conditions are satisfied by (A5). In particular at large distances within the
water p∗ ∼ g̃x, u∗ → 0, v∗ → 0 (since ψ∗ → 0), to leave vanishing flow there, while at the
upper surface the properties x = 0, z = iy, (θ1 + θ2)/2 = π/2 throughout imply that p∗ = 0
there, matching the atmospheric pressure; at higher order (3.4a) would include a contribution
p∗ = −g̃f1Re−1/2 but this is negligible here as g̃ is O(1). Likewise, along the side surface
y = 0, above the trailing-edge contact point we have z = x and (θ1 + θ2)/2 remains π/2, so
that p∗ remains at atmospheric zero, whereas below the trailing edge (θ1 + θ2)/2 is π which
gives the additional ψ∗

t being zero and thus keeps the δ-effect on the total ψ∗ unaltered. The
extra contribution to ψ∗

t concerned with the side free surface is g̃(t2 − x2)1/2 from (A5) and
therefore produces the explicit form given in (5.1) when used with (3.6).
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Appendix B. Other regions, at order-one times

For the leading-edge and contact regions we work in a coordinate frame moving with the plate,
similarly to Section 2, so that

(x, y, u, v, ψ, p) = (1 + t − x̂,−ŷ, 1 − û,−v̂, ψ̂, p̂). (B1)

The unsteady Navier-Stokes equations in usual form then apply to û, v̂, ψ̂, p̂ in coordinates
x̂, ŷ, t , subject to no slip on the plate ŷ = 0 for 0 � x̂ � 1, standard free-surface conditions
for x̂ > 1, symmetry conditions at ŷ = 0 for x̂ < 0 and û = 1, v̂ = p̂ = 0 sufficiently far
from the plate.

The small leading-edge region then has the well-known scalings of x̂ ∼ ŷ ∼ Re−1,
û ∼ v̂ ∼ p̂ ∼ 1, ψ̂ ∼ Re−1, which leave the steady Navier–Stokes equations holding in
full with Re replaced by unity in effect. The solution satisfying the symmetry, no-slip and
matching conditions is as in [22].

Near the contact point (trailing edge), x̂ → 1, we start by re-considering the unsteady
boundary layer 1 and wake 2. The first relation in (3.6) becomes ∂f̄2/∂x̂ = ∂f2/∂t + ∂f2/∂x̂

in the moving system and thus implies that locally ∂f̄2/∂x̂ ∼ ∂f2/∂x̂ for t of order one. The
requirement ∂δW/∂x̂ + ∂f̄2/∂x̂ = 0 locally also from (3.6) coupled with the local behaviour

δ = δW ∼ δ0(t) − (x̂ − 1)1/3δ1(t) (B2)

therefore gives the side-free-surface shape as

f2 ∼ (x̂ − 1)1/3δ1(t) (B3)

for x̂ → 1+ (downstream). Here δ1(t) is positive and of order unity for t ∼ 1. The requirement
above is in order to satisfy the zero-pressure constraint at order Re−1/2 on the free surface.
Upstream δ ∼ δ0(t) + 0(1 − x̂) due to layer 1, as x̂ → 1−. The mismatch with (B2) has to be
smoothed out through shorter length scales close to x̂ = 1. One might expect the quasi-steady
triple-deck structure to provide this smoothing via the length scaling x̂ − 1 = Re−3/8X with
|X| ∼ 1, as in totally immersed trailing-edge flows [23, Chapters 23–25], but that appears
not to be the case here. Instead the results (B2),(B3) continue to apply throughout the Re−3/8

region, with the combination of negative viscous displacement variation (B2) and positive
free-surface displacement (B3) yielding zero total variation in displacement effectively: in
traditional triple-deck notation the present solution has

P ≡ 0, A ≡ 0, (B4)

where p = Re−1/4P and −A is the scaled total variation in displacement, while the lower-
deck flow has uniform shear flow for all X < 0 and the viscous Goldstein near-wake form
(Prandtl-shifted by the free surface at zero pressure P ) for all X > 0. The quasi-steady water
flow streamlines, outside the local viscous layers, thus remain more parallel to the plate here,
compared with the immersed case. The final smoothing actually occurs in a smaller zone
where |x̂ ∼ 1|, ŷ are both of order Re−3/4, û ∼ v̂ ∼ Re−1/4, p̂ ∼ Re−1/2 and so the
quasi-steady Navier-Stokes equations again hold in full with Re replaced by unity. This is as
in [22, 24, 25] but the boundary conditions are different here in that the unknown free surface
is present and the matching condition is new downstream. There the Goldstein near-wake
solution applies in terms of the shifted 0(1) similarity coordinate
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η = Re3/4ŷ − [Re3/4(x̂ − 1)]1/3δ1

[Re3/4(x̂ − 1)]1/3
(B5)

for ŷ � Re−1/2(x̂ − 1)1/3δ1. The edge η = 0 where ∂û/∂ŷ vanishes corresponds to the
free surface, matching with (B3), maintaining the zero pressure condition and giving zero
total displacement variation outside the viscous layer. The flow details at the contact point
including slippage can also be considered to lie within the small 0(Re−3/4) zone as opposed to
those studied in Section 5.2.

The top corner, which is the origin in terms of x, y, is where the side free surface and
upper free surface must merge. The scaled motion there is again controlled by the full Navier-
Stokes equations since locally x, y scale with Re−1/2 and u, v with Re−1/2, so that inertial
and viscous farces are both 0(Re−1/2), with the pressure response being 0(Re−1). Unlike in
the other regions above, the motion here is unsteady however, for t ∼ 1. Thus, with the
full free-surface constraints also holding, and matching with the other regions incorporated, a
challenging problem is set for the top-corner dynamics.

Finally, viscous effects close to the upper free surface must allow the constraints of zero
tangential stress to be satisfied there. Since (3.2b,c) shows inertial forces to be negligible
in region 3 nearby, the main viscous operator Re−1∂2/∂x2 has only to balance the temporal
operator ∂/∂t within the free-surface layer. The viscous scaling is therefore |x| ∼ Re−1/2 and
the known, linear, viscous unsteady problem near a free surface is obtained.
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